
Package mactivate

About

Dave Zes

November 9, 2024

1 Introduction

We start by imagining a system,

Yi = b0 + xi b+ εi , εi ∼ N [0,Σ] (1)

Using data notation, we can write

y = b0 +Xb+ ε (2)

where y is an n × 1 column vector, b0 is a scalar, X is our n × d matrix of inputs � our �design�

matrix; b is a d× 1 column vector; and ε is an n× 1 column vector of observed system shocks, or

errors.

Let us further specify (2):

y = b0 +Xb+X⋆ c+ ε (3)

Here, our inputs, X, and our responses, y, are directly observed. Our n × m matrix X⋆ contains

interactions constructed from X. For example, the �rst column of X⋆ might contain the three-term

element-wise product of, say, columns 1, 2, and 17 of X.

Our goal, then, is to identify X⋆ such that the true coe�cient vector, c, contains all non-zero

elements. Or, in the practical spirit of inferential prediction, to construct X⋆ so that, ŷ0 = f̂(x0, x
⋆
0)

will be as precise a predictor of y0 as possible.

This enterprise of identifying interaction terms falls broadly under �model selection� and more

1

speci�cally under �feature selection�. When d, the number of columns of X is large, �nding X⋆

is traditionally non-trivial. The matter is one of combinatorics. The total number of possible

�rst-or-greater-order interactions is 2d − d.

In the simplest sense, activation layers in arti�cial neural networks (ANNs) are comprised of sibling

units. The state or value of a unit is some function of units' states or values in another layer. It could

be said that multiplicative activation functions have been known, at least in concept, throughout the

6-or-so-decade history of ANNs in much the same way that one might say that arithmetic has been

known throughout the history of mathematics. This is so, if for no other reason, because when units'

states are 0 or 1, i.e, u ∈ {0, 1}, then combining units' values by multiplication serves as a boolean

AND gate. However, the ANN literature is absolutely dominated by additive functions between

units. That is, a unit's value is modeled as some function of a weighted sum of other units's values.

About 20 years ago, there was a bump in interest in multiplicative functions with the conjecture

that some biological neurons actually possessed a �multiplicative-like� behavior [10]. For an example

involving barn owls: [11]. Recently there has been murmurings of renewed interest within the ANN

community. One compelling example couches the matter of detecting interactions much in language

friendly to a more statistical audience [14] � here the researchers uncover potential interactions by

processing the weights (coe�cients) of specially formulated linear units' input functions. Alternately,

towards the same end, [6] extend layers' modeling �exibility by extending the dimensionality of the

weight tensor.

For a more statistical audience, on the topic of detecting interaction e�ects, in their excellent

book ([7]), currently available for online viewing, Kuhn and Johnson point out that tree-based

methods can be e�ective at identifying interaction e�ects (citations include [2, 4, 8]). Trees's leafs

are essentially bins in the input space, and so can naturally implicate non-linear relationships,

including interactions. The Additive Groves method [13] is something of a milestone for e�ciency,

�exibility, and model diagnoses.

More germane to multivariate regression, textbook methods for identifying interactions include

stepwise selection and best subsets. There is a fairly substantial literature of clever multivariate

regression extensions/adaptations, including backtracking [12]; backward dropping algorithm (BDA)

[15]; VANISH [9]; Elastic Net, [16]; the Dantzig Selector, especially suited when the input di-

mensionality is much greater than the number of observations [1]; iFOR, [5]. These multivariate

regression adaptations all possess the commonality that they discourage model complexity during

model parameterization, or �tting. For example, both stepwise selection and best subsets utilize in-

formation criteria, which discourages complex model parameterizations by imposing a penalty that

is a function of the total number of proposed parameters. Other methods discourage complexity by

imposing a penalty that is a function of the parameter estimates themselves. It is important to point

out that in addition to forwarding a conceptual framework, much of the relevant literature provide

technique, technical details concerning implementation. For example, the LARS-EN algorithm for

2

Elastic Net, and the iFORT and iFORM algorithms for iFOR, and, as the very title suggests, the

Penalized Likelihood Maximization Algorithm, [3].

Tree-based methods are extremely powerful and useful. From a nuts-and-bolts perspective, at-

tempting to provide a lucid interpretation as to why, for example, a �tted tree might implicate

an interaction down two branches at two particular nodes at di�erent points in the branches' hi-

erarchy, or, in the case of �tting multiple trees, as with random forests, why one �tted tree may

implicate some interaction whereas another doesn't, can be challenging � especially when the input

dimensionality is large.

Most all the MLR adaptations suited for detecting interactions possess another commonality: They

require either full model speci�cation upfront, e.g., the Dantzig Selector, or at least enumeration

of candidate interaction terms. Our method under present consideration, m-activation, requires

neither.

2 Method

Our method, m-activation, is inspired by dense activation layers in neural nets. This method is

directly understood by understanding a single �activation� function, g.

X∗ = g (X ; W) (4)

where X∗ and X are the familiar input matrices from above, and W is a d×m matrix. Speci�cally,

x∗i,k = g(xi,j ; wj,k) =
d∏

j=1

(xi,j wj,k + 1− wj,k) (5)

where, notationally, xi,j refers to the value at row i and column j of X.

For example, looking at (5), suppose the k-th column of W contains entirely zeroes. Then every

element in the k-th column of X∗ will contain 1 � i.e., unit value. If, at the other extreme, the

k-th column of W contains entirely ones, then every element in the k-th column of X∗ will contain

the grand product of the respective row entries of X � i.e., the full interaction.

2.1 Locating W

For some user-selected m, our task is to locate (or estimate) W.

3

2.1.1 Uniqueness

The notion of uniqueness arises in linear solutions as methods for actually solving systems given data

involve algebraic linear operations that are sensitive to parameter uniqueness. It could and should

be noted that uniqueness is neither necessary, nor, even, su�cient to assure a tractable solution.

The model representation (3) does not necessarily possess a unique parameterization. As an exam-

ple, suppose the �rst column of W contains a 1 at the �rst row, and zeroes otherwise. Then x1 (an

n× 1 column vector), would be equal to the n× 1 column vector x⋆
1 � the two vectors, b1x1 and

c1x
⋆
1 would be perfectly co-linear.

To better understand W and its ultimate role in our solution, let us brie�y consider another simple

speci�c example. Suppose the �rst column of W is

w·,1 = (0.5, 1, 1, 0, 0, 0)T (6)

The �rst column of X∗ would then contain

x∗
·,1 =

1
2 c1 (x1 x2 x3 + x1 x2) =

1
2 c1 (x1 x2 x3) +

1
2 c1 (x1 x2) (7)

Values in W that are not equal to zero or one implicate a polynomial term(s) in X∗. While x∗
·,1

from our example is additive � the sum of a second order interaction (between x1, x2, x3) and a

�rst order interaction (between x1, x2) � the individual contributions of these two terms are tied

by the commonality of their shared coe�cient, c1.

2.1.2 Polynomial Space

When each element of W is in {0, 1}, the class of polynomials de�ned by X∗c created from (5)

includes only the class of polynomials of unshifted inputs � (7) serves an example. The more

realistic and practical setting is one in which our polynomial e�ects arise from shifted inputs, for

example, c1 (x1 − a1) (x2 − a2).

The key insight here is that, inasmuch as nature might on rare occasion materialize data where

our response just so happens to be solely driven by interactions of unshifted inputs (where we can

ideally imagine the contents of W to be in {0, 1}), thinking more broadly we can easily allow the

elements W to reside in [0, 1]. Or, more broadly still, we may allow the elements W to reside in R.

4

In this way, the dual personality of m-activation is revealed. In the former case, when W is an

indicator, it serves as a hard-and-fast object for messaging interactions in X; in the latter cases, W

becomes another parameter, and the behavior of m-activation is much more akin to a neural net

layer.

2.2 Exploration & Con�rmation

No matter what the actual values of W, ultimately X∗ is a column-wise collection of inputs � just

like X. While the process of locating W is clearly a matter of model ��tting�, it also possesses a

spirit of EDA as such a process is essentially searching over the data trying to explain our response,

y. However, given some estimate of W � call it Ŵ � all the familiar tools of con�rmatory analysis

are available to us. For example, considering our original system (3), if our goal is to minimize our

response sum of square errors, then, for X∗ = g
(
X ; Ŵ

)
, everything reduces to simple multivariate

regression where our design matrix, Ξ, is constructed

Ξ = [1,X,X∗] (8)

bringing with it the usual luxury of con�rmatory indicators, t-stats, Information Criteria, diagnos-

tics, etc. � and very importantly, additional exploratory extensions such as regularization.

2.3 Statistical Learning

Quite simply, our lone �tting hyper-parameter is m � the number of columns in Ŵ and X∗. For-

tuitously, since it seems locating W is best done sequentially one column after the next, resampling

methods such as k-fold CV are e�cient, as there is no need to re-locate W for each possible value

of m. For example, suppose Ŵm=1
fold−1 is our estimate when testing for m = 1 (and therefore has one

column), for CV fold 1. Then we may simply append a column to it and use it for fold-1 to test

m = 2 (perhaps holding the �rst column �xed while �tting the values of the second column). And

so on for m = 3, 4, 5,

Since X is �xed, and X∗ is a function of X, the importance of the consequence of (8) can be

emphasized by noting that in a descriptive setting, the quality of a candidate �t is uniquely and

solely determined by Ŵ; in an inferential setting, our �linear� solution is amenable to the usual

extensions, such as regularization.

5

References

[1] E. Candes, T. Tao, et al. The dantzig selector: Statistical estimation when p is much larger

than n. The annals of Statistics, 35(6):2313�2351, 2007.

[2] J. Elith, J. R. Leathwick, and T. Hastie. A working guide to boosted regression trees. Journal

of Animal Ecology, 77(4):802�813, 2008.

[3] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle proper-

ties. Journal of the American statistical Association, 96(456):1348�1360, 2001.

[4] M. García-Magariños, I. López-de Ullibarri, R. Cao, and A. Salas. Evaluating the ability of

tree-based methods and logistic regression for the detection of snp-snp interaction. Annals of

human genetics, 73(3):360�369, 2009.

[5] N. Hao and H. H. Zhang. Interaction screening for ultrahigh-dimensional data. Journal of the

American Statistical Association, 109(507):1285�1301, 2014.

[6] S. M. Jayakumar, W. M. Czarnecki, J. Menick, J. Schwarz, J. Rae, S. Osindero, Y. W. Teh,

T. Harley, and R. Pascanu. Multiplicative interactions and where to �nd them. In International

Conference on Learning Representations, 2019.

[7] M. Kuhn and K. Johnson. Feature Engineering and Selection: A Practical Approach for Pre-

dictive Models. Chapman & Hall/CRC Data Science Series. Chapman and Hall/CRC, 2019.

[8] E. Lampa, L. Lind, P. M. Lind, and A. Bornefalk-Hermansson. The identi�cation of complex

interactions in epidemiology and toxicology: a simulation study of boosted regression trees.

Environmental health, 13(1):1�17, 2014.

[9] P. Radchenko and G. M. James. Variable selection using adaptive nonlinear interaction struc-

tures in high dimensions. Journal of the American Statistical Association, 105(492):1541�1553,

2010.

[10] M. Schmitt. On the complexity of computing and learning with multiplicative neural networks.

Neural Computation, 14(2):241�301, 2002.

[11] J. W. Schnupp and A. J. King. Neural processing: the logic of multiplication in single neurons.

Current Biology, 11(16):R640�R642, 2001.

[12] R. D. Shah. Modelling interactions in high-dimensional data with backtracking. Journal of

Machine Learning Research, 17(207):1�31, 2016.

[13] D. Sorokina, R. Caruana, and M. Riedewald. Additive groves of regression trees. In European

Conference on Machine Learning, pages 323�334. Springer, 2007.

6

[14] M. Tsang, D. Cheng, and Y. Liu. Detecting statistical interactions from neural network weights.

arXiv preprint arXiv:1705.04977, 2017.

[15] H. Wang, S.-H. Lo, T. Zheng, and I. Hu. Interaction-based feature selection and classi�cation

for high-dimensional biological data. Bioinformatics, 28(21):2834�2842, 09 2012.

[16] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the

royal statistical society: series B (statistical methodology), 67(2):301�320, 2005.

7

3 Appendix

3.0.1 Metaheuristics

Metaheuristic stochastic search (MSS) is often slow, and commonly regarded as inelegant. I'd be

surprised if, over the last 50 years, anyone attained any acclaim over an MSS implementation.

However, there is a certain poetry to MSS. First, it works. MSS happily dances around iteratively

over the parameter space in a semi-directed fashion, constantly testing tries against the objective

function, sidling towards the best and away from the worst. Not surprisingly � at least to the

author � so too in our present setting. Working with simulated examples both large and small, MSS

happily located our model parameters. The real charm of MSS is that it is completely indi�erent to

properties the objective function � it only requires the objective function itself. There's no need to

calculate any derivatives, posterior distributions, or the like, which may be why it is often ignored

by hardened academicians.

Another nice property of MSS is that the search is amenable to asynchronous iteration and hence

parallelization. MSS does possess drawbacks. Most notoriously, it's slow. Moreover, MSS comes

in many variants, and its success on a particular model can be highly dependent on the particular

variant applied and tuning parameters such as search radius, sequence or order of model parameters

over which to search, stopping rules, and the like.

3.0.2 First-Order Descent

Again, working with a number simulated examples both large and small, recursive �rst-order descent,

θ+ = θ − a
∂f

∂θ
(9)

where f is our objective function, and a is our step size, reliably located our parameters. This

method is sensitive to the step size, a.

3.0.3 Hybrid

Each recursive step comprises two distinct parts. The �rst, estimate b0 and b. Then estimate c

and W.

For the sake of notational simplicity, let's have b include b0, Xint respectively include a column of

8

1s.

(i)X∗ = g(X, (i)W) (10)

(i)ynocw = (i)X∗ (i)c (11)

(i)enocw = y − (i)ynocw (12)

(i)b = argmin
(i)b

{∥∥(i)enocw −Xint
(i)b

∥∥} (Least Squares Solution) (13)

(i)ŷb = Xint
(i)b (14)

−−−−−−−−−−− (15)

(i)enob = y − (i)ŷb (16)

(i)c , (i)W = argmin
(i)c , (i)W

{∥∥(i)e2nob − (i)X∗ (i)c
∥∥} (Gradient Descent) (17)

9

	Introduction
	Method
	Locating W
	Uniqueness
	Polynomial Space

	Exploration & Confirmation
	Statistical Learning

	Appendix
	Metaheuristics
	First-Order Descent
	Hybrid

