Package: mactivate 0.6.6
mactivate: Multiplicative Activation
Provides methods and classes for adding m-activation ("multiplicative activation") layers to MLR or multivariate logistic regression models. M-activation layers created in this library detect and add input interaction (polynomial) effects into a predictive model. M-activation can detect high-order interactions -- a traditionally non-trivial challenge. Details concerning application, methodology, and relevant survey literature can be found in this library's vignette, "About."
Authors:
mactivate_0.6.6.tar.gz
mactivate_0.6.6.zip(r-4.5)mactivate_0.6.6.zip(r-4.4)mactivate_0.6.6.zip(r-4.3)
mactivate_0.6.6.tgz(r-4.4-x86_64)mactivate_0.6.6.tgz(r-4.4-arm64)mactivate_0.6.6.tgz(r-4.3-x86_64)mactivate_0.6.6.tgz(r-4.3-arm64)
mactivate_0.6.6.tar.gz(r-4.5-noble)mactivate_0.6.6.tar.gz(r-4.4-noble)
mactivate_0.6.6.tgz(r-4.4-emscripten)mactivate_0.6.6.tgz(r-4.3-emscripten)
mactivate.pdf |mactivate.html✨
mactivate/json (API)
NEWS
# Install 'mactivate' in R: |
install.packages('mactivate', repos = c('https://davezes.r-universe.dev', 'https://cloud.r-project.org')) |
- df_hospitals_ortho - Orthopedic Device Sales
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:6c6cfa6126. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win-x86_64 | OK | Nov 09 2024 |
R-4.5-linux-x86_64 | OK | Nov 09 2024 |
R-4.4-win-x86_64 | OK | Nov 09 2024 |
R-4.4-mac-x86_64 | OK | Nov 09 2024 |
R-4.4-mac-aarch64 | OK | Nov 09 2024 |
R-4.3-win-x86_64 | OK | Nov 09 2024 |
R-4.3-mac-x86_64 | OK | Nov 09 2024 |
R-4.3-mac-aarch64 | OK | Nov 09 2024 |
Exports:f_control_mactivatef_dmss_dWf_fit_gradient_01f_fit_gradient_logistic_01f_fit_hybrid_01f_logit_costf_mactivatepredict.mactivate_fit_gradient_01predict.mactivate_fit_gradient_logistic_01predict.mactivate_fit_hybrid_01
Dependencies:
mactivate-about
Rendered frommactivation_about_01.Snw
usingutils::Sweave
on Nov 09 2024.Last update: 2021-01-08
Started: 2021-01-08
mactivate-examples-1
Rendered frommactivation_examples_01.Snw
usingutils::Sweave
on Nov 09 2024.Last update: 2021-01-08
Started: 2021-01-08
mactivate-examples-2
Rendered frommactivation_examples_02.Snw
usingutils::Sweave
on Nov 09 2024.Last update: 2021-01-08
Started: 2021-01-08
mactivate-tutorial-1
Rendered frommactivation_tutorial_01.Snw
usingutils::Sweave
on Nov 09 2024.Last update: 2021-01-08
Started: 2021-01-08
Readme and manuals
Help Manual
Help page | Topics |
---|---|
m-activation | mactivate-package mactivate |
Orthopedic Device Sales | df_hospitals_ortho |
Set Fitting Hyperparameters | f_control_mactivate |
Calculate Derivative of Cost Function wrt W | f_dmss_dW |
Fit Multivariate Regression Model with mactivate Using Gradient Descent | f_fit_gradient_01 |
Fit Logistic Multivariate Regression Model with mactivate Using Gradient Descent | f_fit_gradient_logistic_01 |
Fit Multivariate Regression Model with mactivate Using Hybrid Method | f_fit_hybrid_01 |
Logistic Cost | f_logit_cost |
Map Activation Layer and Inputs to Polynomial Model Inputs | f_mactivate |
Predict from Fitted Gradient Model | predict.mactivate_fit_gradient_01 |
Predict from Fitted Gradient Logistic Model | predict.mactivate_fit_gradient_logistic_01 |
Predict from Fitted Hybrid Model | predict.mactivate_fit_hybrid_01 |